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Abstract

In this note, mistuned periodic structures are considered. Due to mistunings, some components of such
structures may vibrate with small amplitudes, while some other components may vibrate with significantly
large amplitudes. Such a behavior is known as vibration localization and is undesirable. To have a means of
determining the occurrence of vibration localization, a sensitivity matrix is defined. This matrix and its
singular values are computable. It is argued that if some of the singular values of the sensitivity matrix are
large, then vibration localization can possibly occur. More importantly, an effective passive technique is
proposed that eliminates vibration localization in mistuned periodic structures. The technique is to add
small components between the structure components. Using the sensitivity matrix, it is shown that the
added components indeed eliminate vibration localization.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Periodic structures consist of coupled identical components. There are many examples of
periodic structures; for instance, blades used in turbomachinery, combs of comb-drives in micro
electro-mechanical systems (MEMS), disks stacked on shafts of hard-disk drives, and large-scale
satellite antennas, to name a few. Components of periodic structures are designed and
manufactured to have the same geometry and material properties. In reality, however, this is
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.03.075

10-642-3248.

ress: shahruz@cal.berkeley.edu (S.M. Shahruz).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

S.M. Shahruz / Journal of Sound and Vibration 281 (2005) 452–462 453
not the case: components of periodic structures are not exactly identical and differ slightly from
each other. In this case, the structure is said to be mistuned. The differences between components
of a mistuned periodic structure and a desired component are called mistunings. Mistunings are
typically due to slight differences in the geometry and material properties of the structure
components which are mainly introduced during manufacturing.

If there were no mistuning in a periodic structure, then its components would have had the
same dynamics. Small mistunings, however, can cause significant differences in the dynamics of
structure components. For instance, consider a mistuned structure under a harmonic input. In
such a structure, at resonance frequencies, some components may vibrate with small amplitudes,
while some other components may vibrate with significantly large amplitudes. This behavior is
known as vibration localization and has been studied by numerous researchers; see, e.g., Refs. [1–5]
and references therein. Roughly speaking, vibration localization in a periodic structure is due to
mistunings in its components, small damping in its components, and weak coupling between its
components.

Vibration localization in a periodic structure is undesirable since it causes large vibrations and
stresses and possible damage in some of the structure components. Several researchers have
devised means of reducing vibration localization; see, e.g., Refs. [4,5] and references therein. There
is, however, no effective technique by which vibration localization can be eliminated. Therefore,
new techniques that successfully eliminate vibration localization are welcome; in particular,
passive techniques.

In this note, a novel and effective passive technique is proposed that eliminates vibration
localization in mistuned periodic structures. The organization of the note is as follows. In Section
2, a mathematical model of mistuned periodic structures is presented. In Sections 3 and 4, it is
explained how to determine the possibility of the occurrence of vibration localization in such
structures. In Section 5, it is shown that when a mistuned structure is augmented by small
components, vibration localization in the structure is eliminated. Examples are given throughout
the note.
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Fig. 1. A typical periodic structure having n components. Displacement of a component for an i ¼ 1; 2; . . . ; n is denoted

by xi:
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2. A model of mistuned periodic structures

In this section, a mathematical model of mistuned periodic structures with n coupled
components is presented; see Fig. 1 for a typical periodic structure. This model is obtained using
the methodology in Ref. [3], and is as follows:
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for all tX0: In Eq. (1), the vector of angular displacements

½ y1ðtÞ y2ðtÞ � � � ynðtÞ �
T ¼: yðtÞ 2 Rn; (2)

for all tX0; the vectors of initial displacements and initial velocities are, respectively, yð0Þ ¼ 0n

and _yð0Þ ¼ 0n; where 0n denotes the zero vector in Rn; the positive real numbers a1; a2; . . . ; an

denote the normalized lengths of the structure components, the positive real number g denotes the
normalized damping coefficient in the structure components, and the positive real number b
denotes the normalized coupling parameter of the structure components; the input (influence)
vector

½ a1 a2 � � � an �
T ¼: bf 2 Rn; (3)

through which the scalar-valued input t 7! f ðtÞ is applied to the structure.
In a periodic structure, the lengths a1; a2; . . . ; an should be equal to a desired value ad : In reality,

however, these lengths are different from each other and ad ; even only slightly. That is, in reality,
periodic structures are mistuned.

Let the coefficient matrices of €yð�Þ and yð�Þ in Eq. (1) be denoted by M and K, respectively. Then,
Eq. (1) can be written as

M €yðtÞ þ gM _yðtÞ þ KyðtÞ ¼ bf f ðtÞ; yð0Þ ¼ 0n; _yð0Þ ¼ 0n; (4)
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for all tX0: The state-space representation of system (1) (equivalently, system (4)), which will be
used in computations, is as follows:

d

dt

yðtÞ
_yðtÞ

� �
¼ A

yðtÞ
_yðtÞ

� �
þ bf ðtÞ;
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� �
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� �
; (5a)

xðtÞ :¼ ½x1ðtÞ x2ðtÞ � � � xnðtÞ �
T ¼ C

yðtÞ

_yðtÞ

" #
; (5b)

for all tX0; where

A ¼
0 In

�M�1K �gIn

� �
2 R2n�2n; b ¼

0n

M�1bf

� �
2 R2n; (6a)

C ¼ ½ diag ½a1; a2; . . . ; an� 0 � 2 Rn�2n; (6b)

and In denotes the n � n identity matrix; the system output xðtÞ 2 Rn is a vector consisting of the
normalized displacements of the tips of the structure components, xiðtÞ ¼ aiyiðtÞ; where i ¼

1; 2; . . . ; n:
Vibration localization in system (1) can be studied via the system representation in Eq. (5).
3. Analysis based on transfer functions

In studying vibration localization in mistuned periodic structures, in general, transfer functions
from the applied input to structure displacements play an important role, as it will be shown in
this note. Let hiðsÞ denote the transfer function from the input f ð�Þ to the normalized displacement
xið�Þ ¼ aiyið�Þ for an i ¼ 1; 2; . . . ; n: Using Eqs. (4) and (5), it is concluded that
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�1bf ¼ CðsI2n � AÞ
�1b; (7)

where A, b, and C are given by in Eq. (6). To each transfer function hiðsÞ in Eq. (7), there
corresponds an H1-norm defined by

khik1 :¼ max
o2R

jhiðjoÞj; (8)

where j ¼
ffiffiffiffiffiffiffi
�1

p
: The norm khik1 corresponds to the global maximum of the Bode magnitude plot

of the transfer function hiðsÞ: It is remarked that by using the state-space representation in Eq. (5),
the transfer functions in Eq. (7) and their corresponding H1-norms can be conveniently
computed by MATLAB programs for any n; see Ref. [6].

The occurrence of vibration localization due to mistunings is easily determined
when kh1k1; kh2k1; . . . ; khnk1 are known. If khik1 for at least one i ¼ 1; 2; . . . ; n is larger than the
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H1-norms of other transfer functions, then vibration localization occurs. In other words, if
kh1k1; kh2k1; . . . ; khnk1 do not differ much from each other, then vibration localization does not
occur.

To illustrate vibration localization due to mistunings, an example is now given.

Example 3.1. In system (1), let n ¼ 4; the coupling coefficient b ¼ 0:005; and the damping
coefficient g ¼ 0:01: With this setup, several studies are conducted:

Study 1. No mistuning: Let ai ¼ 1 for i ¼ 1; 2; 3; 4: The H1-norms of transfer functions
h1ðsÞ; h2ðsÞ; h3ðsÞ; and h4ðsÞ; obtained via Eq. (7), are

kh1k1 ¼ kh2k1 ¼ kh3k1 ¼ kh4k1 ¼ 100:05: (9)

Since there is no mistuning, a same value for the H1-norms is expected: no mistuning implies no
vibration localization. The Bode magnitude plots of h1ðsÞ; h2ðsÞ; h3ðsÞ; and h4ðsÞ are depicted in Fig.
2. These plots overlap as expected.

Study 2. Effect of mistunings: Let there be mistunings and for instance

a1 ¼ 0:98; a2 ¼ 1:04; a3 ¼ 1:05; a4 ¼ 1:03: (10)

It should be remarked that in reality a1; a2; a3; and a4 are not exactly known; it is only known that
they are close to the desired value ad ¼ 1: The H1-norms of transfer functions h1ðsÞ; h2ðsÞ; h3ðsÞ;
and h4ðsÞ are

kh1k1 ¼ 92:68; kh2k1 ¼ 85:60; kh3k1 ¼ 122:65; kh4k1 ¼ 95:95: (11)

It is clear that due to small mistunings, the H1-norms are appreciably different from each other;
in particular, kh3k1 is larger than the other norms. Thus, vibration localization occurs. The Bode
magnitude plots of h1ðsÞ; h2ðsÞ; h3ðsÞ; and h4ðsÞ are depicted in Fig. 3. These plots are different from
each other due to mistunings.
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Fig. 2. The Bode magnitude plots of h1ðsÞ; h2ð2Þ; h3ðsÞ; and h4ðsÞ in Example 3.1, when there is no mistuning in the

structure.
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Fig. 3. The Bode magnitude plots of h1ðsÞ; h2ð2Þ; h3ðsÞ; and h4ðsÞ in Example 3.1, when there are mistunings in the

structure.
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4. Sensitivity of norms to mistunings

In a mistuned structure, the lengths a1; a2; . . . ; an differ from each other and a desired value ad :
If these lengths were exactly known, then kh1k1; kh2k1; . . . ; khnk1 could have been computed, by
which the occurrence of vibration localization could have been determined. In reality, however,
a1; a2; . . . ; an are not exactly known; it is only known that they are close to ad : That is,
kh1k1; kh2k1; . . . ; khnk1 cannot be computed. Therefore, there should be a means of determining
the occurrence of vibration localization without computing kh1k1; kh2k1; . . . ; khnk1: In this
section, it is shown that such a means is indeed available.

For an i ¼ 1; 2; . . . ; n; the transfer function hiðsÞ; which is obtained via Eq. (7), is a function of
a1; a2; . . . ; an; so is khik1: This norm as a function is thus denoted by ða1; a2; . . . ; anÞ7!

khik1ða1; a2; . . . ; anÞ: Suppose that this function is computed at ā1; ā2; . . . ; ān: To determine how
much khik1ða1; a2; . . . ; anÞ is different from khik1ðā1; ā2; . . . ; ānÞ when ai is slightly different
from āi for some i ¼ 1; 2; . . . ; n; the following matrix, to be called the sensitivity matrix,
is computed

Sðā1; ā2; . . . ; ānÞ ¼

qkh1k1
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qkh1k1
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� � �
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� � �
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� � �
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2
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2 Rn�n; (12)
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where

qkhkk1

qal

¼
khkk1ðā1; ā2; . . . ; āl þ dal ; . . . ; ānÞ � khkk1ðā1; ā2; . . . ; āl ; . . . ; ānÞ

dal

; (13)

for all k; l ¼ 1; 2; . . . ; n; with 0odal51: In Eq. (13), āi is known for all i ¼ 1; 2; . . . ; n: Thus, by
using a same value for dal for all l ¼ 1; 2; . . . ; n; the right-hand side of Eq. (13) is readily
computable; so is the matrix Sðā1; ā2; . . . ; ānÞ:

Once the sensitivity matrix is computed, it can be decomposed by the singular value
decomposition as

Sðā1; ā2; . . . ; ānÞ ¼ USVT; (14)

where U 2 Rn�n and V 2 Rn�n are unitary matrices, and S ¼ diag ½s1;s2; . . . ; sn� 2 Rn�n is a
matrix the diagonal elements of which are the singular values of Sðā1; ā2; . . . ; ānÞ; ordered as
s1Xs2X � � �XsnX0; see, e.g., Refs. [7,8]. If some of the singular values are large, then
khik1ða1; a2; . . . ; anÞ is much different from khik1ðā1; ā2; . . . ; ānÞ for some i ¼ 1; 2; . . . ; n:

For a periodic structure, āi ¼ ad for all i ¼ 1; 2; . . . ; n: Therefore, the sensitivity matrix to be
computed is Sðā1 ¼ ad ; ā2 ¼ ad ; . . . ; ān ¼ adÞ: If some of the singular values of this matrix are
large, then mistunings (slight differences between ai and ad for some i ¼ 1; 2; . . . ; nÞ can lead to
large differences between khik1 for some i ¼ 1; 2; . . . ; n; that is, vibration localization can occur.

An example is now given to illustrate the usefulness of the sensitivity matrix in determining the
occurrence of vibration localization.
Example 4.1. Consider the structure in Example 3.1. The structure is periodic where the desired
length of its components is ad ¼ 1: However, the structure is mistuned. That is, a1; a2; a3; and a4

are different from each other, are not exactly known, but are close to ad : It is desirable to decide
whether or not vibration localization can occur in the structure. The decision can be made by
means of the singular values of the sensitivity matrix. This matrix is

Sð1; 1; 1; 1Þ ¼

10191:36 �3826:15 �4971:16 �3826:15

�3828:94 10188:82 �3811:52 �4973:94

�4973:94 �3828:94 10188:82 �3828:94

�3828:91 �4973:91 �3828:91 10188:85

2
6664

3
7775: (15)

In computing Sð1; 1; 1; 1Þ via Eqs. (12) and (13), dal ¼ 0:001 was used for all l ¼ 1; 2; 3; 4: The
singular values of Sð1; 1; 1; 1Þ are

s1 ¼ 15167:06; s2 ¼ 15158:36; s3 ¼ 12868:33; s4 ¼ 2435:88: (16)

Since the singular values of the sensitivity matrix are large, vibration localization can occur. This
conclusion was reached in Example 3.1, where it was assumed that the values of lengths of the
components of the mistuned structure were known (see Eq. (10)); an assumption that does not
hold in reality.
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5. Elimination of vibration localization

In this section, a novel technique is proposed that eliminates vibration localization in mistuned
periodic structures. The proposed technique desensitizes the H1-norms of the transfer functions
of such structures to slight mistunings in the lengths of the structure components.

In a periodic structure, let there be n components numbered by odd numbers 1; 3; . . . ; 2n � 1;
see Fig. 4. These components are called the principal components. The lengths of the principal
components are a1; a3; . . . ; a2n�1; and are desired to be equal to ad :

Let the structure be augmented by adding n components between the principal components as
shown in Fig. 4. The added components are numbered by even numbers 2; 4; . . . ; 2n and are called
the auxiliary components. The normalized lengths of the auxiliary components are a2; a4; . . . ; a2n;
and are desired to be equal to as5ad : It is remarked that the auxiliary components are chosen
much smaller than the principal components. Moreover, the auxiliary components should
preserve the symmetry and periodicity of the structure.

The augmented structure is represented by

M̂
€̂yðtÞ þ gM̂ _̂yðtÞ þ K̂ ŷðtÞ ¼ b̂f f ðtÞ; ŷð0Þ ¼ 02n;

_̂yð0Þ ¼ 02n; (17)

for all tX0; where

ŷðtÞ :¼ ½ y1ðtÞ y2ðtÞ � � � y2n�1ðtÞ y2nðtÞ �
T 2 R2n; (18a)

b̂f ¼ ½ a1 a2 � � � a2n�1 a2n �
T 2 R2n; (18b)

M̂ ¼ diag ½a3
1; a

3
2; . . . ; a

3
3n�1; a

3
2n� 2 R2n�2n; (18c)

and the matrix K̂ 2 R2n�2n has the same structure as that of K in Eq. (1). The state-space
representation of system (17) has the same form as that in Eq. (5), except that it has a different
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state-vector and coefficient matrices. There are now 2n transfer functions from f ð�Þ to xið�Þ ¼

aiyið�Þ; denoted by hiðsÞ for an i ¼ 1; 2; . . . ; 2n: These transfer functions are given by

h1ðsÞ

h2ðsÞ

..

.

h2nðsÞ

2
66664

3
77775 ¼ diag ½a1; a2; . . . ; a2n�1; a2n�ðM̂s2 þ gM̂s þ K̂Þ

�1b̂f : (19)

By adding the auxiliary components, the H1-norms of the transfer functions corresponding to
the principal components, i.e., kh2i�1k1ðad ; as; . . . ; ad ; asÞ for all i ¼ 1; 2; . . . ; n; will become in-
sensitive to mistunings in both principal and auxiliary components. The truth of this statement can
be verified by computing the sensitivity matrix of the augmented structure, namely,
Sðad ; as; . . . ; ad ; asÞ: Therefore, vibration localization is eliminated by adding the auxiliary
components.

To show the efficacy of the auxiliary components in eliminating vibration localization an
example is given.

Example 5.1. Consider the structure in Example 3.1. The (principal) components of the structure
are now numbered by 1; 3; 5; 7: Four auxiliary components are added to the structure and
numbered by 2; 4; 6; 8: The desired length of all principal components is ad ¼ 1: The desired length
of all auxiliary components is chosen as ¼ 0:01: For this structure, the sensitivity matrix is
Sð1; 0:01; 1; 0:01; 1; 0:01; 1; 0:01Þ and is computed via Eq. (12). The singular values of this matrix,
when dal ¼ 0:001 for l ¼ 1; 2; . . . ; 8; are

s1 ¼ 463:40; s2 ¼ 463:33; s3 ¼ 463:30; s4 ¼ 463:27; (20a)

s5 ¼ 213:23; s6 ¼ 112:39; s7 ¼ 80:38; s8 ¼ 62:66: (20b)

Since the singular values are much smaller than those in Eq. (17), it is concluded that vibration
localization does not occur.

To confirm the efficacy of the auxiliary components in desensitizing kh1k; kh3k; kh5k; and kh7k

to mistunings, and hence in eliminating vibration localization, let

a1 ¼ 0:98; a3 ¼ 1:04; a5 ¼ 1:05; a7 ¼ 1:03; (21a)

a2 ¼ 0:011; a4 ¼ 0:012; a6 ¼ 0:0098; a8 ¼ 0:0105: (21b)

The lengths of the principal components are those in Eq. (10), and those of the auxiliary
components differ from the desired length as ¼ 0:01: The H1-norms of transfer functions
h1ðsÞ; h2ðsÞ; . . . ; h8ðsÞ are

kh1k1 ¼ 98:54; kh3k1 ¼ 101:39; kh5k1 ¼ 102:15; kh7k1 ¼ 101:02; (22a)

kh2k1 ¼ 10:44; kh4k1 ¼ 10:91; kh6k1 ¼ 9:86; kh8k1 ¼ 10:20: (22b)

It is clear that the H1-norms of the transfer functions corresponding to the principal components
are almost equal; so are those of the transfer functions corresponding to the auxiliary
components. That is, even though there are mistunings in all components of the augmented
structure, the principal components have the same dynamics. This implies that vibration
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Fig. 5. (a) The Bode magnitude plots of the transfer functions of the augmented structure in Example 5.1. The plots

corresponding to the transfer functions of the principal components, h1ðsÞ; h3ðsÞ; h5ðsÞ; and h7ðsÞ; peak close to o ¼ 1:
The plots corresponding to the transfer functions of the auxiliary components, h2ðsÞ; h4ðsÞ; h6ðsÞ; and h8ðsÞ; peak close to

o ¼ 1000: (b) Magnification of the plots corresponding to the transfer functions of the principal components. (c)

Magnification of the plots corresponding to the transfer functions of the auxiliary components.
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localization is eliminated. The Bode magnitude plots of the transfer functions of the augmented
structure are depicted in Fig. 5(a). The plots corresponding to the transfer functions of the
principal components, h1ðsÞ; h3ðsÞ; h5ðsÞ; and h7ðsÞ; peak close to o ¼ 1; see also the magnified
plots in Fig. 5(b). The plots corresponding to the transfer functions of the auxiliary components,
h2ðsÞ; h4ðsÞ; h6ðsÞ; and h8ðsÞ; peak close to o ¼ 1000; see also the magnified plots in Fig. 5(c).
6. Conclusions

In this note, vibration localization in mistuned periodic structures was studied using a
mathematical model of such structures. This model is an n-degree of freedom system under a
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scalar-valued input. There are n transfer functions corresponding to this structure that relate the
structure displacements to the applied input. When mistunings in the structure are known, the
H1-norms of the transfer functions can be computed, thereby the possibility of the occurrence of
vibration localization can be determined. In reality, however, mistunings in the structure are not
known. Thus, the H1-norms of the structure transfer functions cannot be computed, and
consequently the occurrence of vibration localization cannot be determined. To have a means of
determining the occurrence of vibration localization, a sensitivity matrix was defined. This matrix
and its singular values are computable. If some of the singular values of the sensitivity matrix are
large, then vibration localization can possibly occur.

More importantly, in this note an effective passive technique was proposed that eliminates
vibration localization in mistuned periodic structures. The elimination is achieved by adding small
components between the structure components. By using the sensitivity matrix, the efficacy of the
added components in eliminating vibration localization was demonstrated. A rigorous
mathematical proof as why the added components can eliminate vibration localization will be
presented in the near future.
References

[1] C.O. Orgun, Vibration Localization in Multiple Disk Stacks, Master of Science Thesis, Department of Mechanical

Engineering, University of California, Berkeley, 1991.

[2] O.O. Bendiksen, Localization phenomena in structural dynamics, Chaos, Solitons and Fractals 11 (2000) 1621–1660.

[3] H.H. Yoo, J.Y. Kim, D.J. Inman, Vibration localization of simplified mistuned cyclic structures undertaking

external harmonic force, Journal of Sound and Vibration 261 (2003) 859–870.

[4] M.P. Castanier, C. Pierre, Consideration on the benefits of intensional blade mistuning for the forced response of

turbomachinery rotors, in: G.J. Simitses (Ed.), Analysis and Design Issues for Modern Aerospace Vehicles, The

American Society of Mechanical Engineers, New York, 1997, pp. 419–425.

[5] J. Tang, K.W. Wang, Vibration delocalization of nearly periodic structures using coupled piezoelectric networks,

Journal of Vibration and Acoustics 125 (2003) 95–108.

[6] MATLAB, Mathworks, Inc., Natick, MA.

[7] G. Noble, J.W. Daniel, Applied Linear Algebra, third ed., Prentice-Hall, Englewood Cliffs, NJ, 1988.

[8] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., Johns Hopkins University Press, Baltimore, MD,

1996.


	Elimination of vibration localization in mistuned �periodic structures
	Introduction
	A model of mistuned periodic structures
	Analysis based on transfer functions
	Sensitivity of norms to mistunings
	Elimination of vibration localization
	Conclusions
	References


